翻訳と辞書
Words near each other
・ Deganwy
・ Deganwy Castle
・ Deganwy railway station
・ Degaon
・ Degar
・ Degar refugees in Cambodia
・ Degarelix
・ DeGarmo and Key
・ Degarmoara
・ Degaru language
・ Degas (crater)
・ Degas (disambiguation)
・ DEGAS (software)
・ Degas, Iran
・ Degasification
Degasperis–Procesi equation
・ Degassed water
・ Degasser
・ DeGaulle Manor
・ Degaussing
・ Degaña
・ Degaña (parish)
・ Dege
・ Dege & Skinner
・ Degeberga
・ Degeh
・ Degeh, Sardasht
・ Degeh, Vazineh
・ Degehabur
・ Degehabur (woreda)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Degasperis–Procesi equation : ウィキペディア英語版
Degasperis–Procesi equation
In mathematical physics, the Degasperis–Procesi equation
: \displaystyle u_t - u_ + 2\kappa u_x + 4u u_x = 3 u_x u_ + u u_
is one of only two exactly solvable equations in the following family of third-order, non-linear, dispersive PDEs:
:\displaystyle u_t - u_ + 2\kappa u_x + (b+1)u u_x = b u_x u_ + u u_,
where \kappa and ''b'' are real parameters (''b''=3 for the Degasperis–Procesi equation). It was discovered by Degasperis and Procesi in a search for integrable equations similar in form to the Camassa–Holm equation, which is the other integrable equation in this family (corresponding to ''b''=2); that those two equations are the only integrable cases has been verified using a variety of different integrability tests.〔Degasperis & Procesi 1999; Degasperis, Holm & Hone 2002; Mikhailov & Novikov 2002; Hone & Wang 2003; Ivanov 2005〕 Although discovered solely because of its mathematical properties, the Degasperis–Procesi equation (with \kappa > 0) has later been found to play a similar role in water wave theory as the Camassa–Holm equation.〔Johnson 2003; Dullin, Gottwald & Holm 2004; Constantin & Lannes 2007; Ivanov 2007〕
== Soliton solutions ==
(詳細はmultipeakon solutions, which are functions of the form
:\displaystyle u(x,t)=\sum_^n m_i(t) e^
where the functions m_i and x_i satisfy〔Degasperis, Holm & Hone 2002〕
:\dot_i = \sum_^n m_j e^,\qquad \dot_i = 2 m_i \sum_^n m_j\, \sgn e^.
These ODEs can be solved explicitly in terms of elementary functions, using inverse spectral methods.〔Lundmark & Szmigielski 2003, 2005〕
When \kappa > 0 the soliton solutions of the Degasperis–Procesi equation are smooth; they converge to peakons in the limit as \kappa tends to zero.〔Matsuno 2005a, 2005b〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Degasperis–Procesi equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.